2.2.1 Rem
Rem adalah sebuah peralatan dengan memakai tahanan gesek buatan yang diterapkan pada sebuah mesin berputar agar gerakan mesin berhenti. Rem menyerap energi kinetik dari bagian yang bergerak. Energi yang diserap oleh rem berubah dalam bentuk panas. Panas ini akan menghilang dalam lingkungan udara supaya pemanasan yang hebat dari rem tidak terjadi. Desain atau kapasitas dari sebuah rem tergantung pada faktor-faktor berikut ini (Zainuri, 2010) :
1. Tekanan antara permukaan rem.
2. Koefisien gesek antara permukaan rem.
3. Kecepatan keliling dari teromol rem.
4. Luas proyeksi permukaan gesek.
5. Kemampuan rem untuk menghilangkan panas terhadap energi yang diserap.
Perbedaan fungsi utama antara sebuah clutch (kopling tak tetap) dan sebuah rem adalah bahwa clutch digunakan untuk mengatur/menjaga penggerak dan yang digerakan secara bersama-sama, sedangkan rem digunakan untuk menghentikan sebuah gerakan atau mengatur putaran (Zainuri, 2010).
Gambar 2.1 Kampas rem tromol ( Jama, 2008)
2.2.1.1 Material Untuk Lapisan Rem
Material yang digunakan untuk lapisan rem harus mempunyai cirri-ciri sebagai berikut (Zainuri, 2010):
1. Mempunyai koefisien gesek yang tinggi.
2. Mempunyai laju keausan yang rendah.
3. Mempunyai tahanan panas yang tinggi.
4. Mempunyai kapasitas disipasi panas yang tinggi.
5. Mempunyai koefisien ekspansi termal yang rendah.
6. Mempunyai kekuatan mekanik yang mencukupi.
7. Tidak dipengaruhi oleh moisture (embun) dan oil (minyak).
Tabel 2.1 Sifat material untuk kampas rem
Sumber : (Zainuri, 2010).
2.2.2 Prinsip Dasar Pengereman
Sistem rem dalam teknik otomotif adalah suatu sistem yang berfungsi untuk:
1. Mengurangi kecepatan kendaraan.
2. Menghentikan kendaraan yang sedang berjalan.
3. Menjaga agar kendaraan tetap berhenti.
Pada setiap kendaraan bermotor kemampuan system pengereman menjadi sesuatu yang sangat penting karena dapat mempengaruhi keselamatan kendaraan tersebut. Semakin tinggi kemampuan kendaraan tersebut untuk melaju maka diperlukan sistem pengereman yang lebih handal dan optimal untuk menghentikan atau memperlambat laju kendaraan tersebut. Untuk mencapainya, diperlukan perbaikan – perbaikan dalam system pengereman. Sistem rem yang baik adalah sistem rem yang apabila dilakukan pengereman baik dalam kondisi apapun pengemudi tetap dapat mengendalikan arah dari laju pengereman (http://id.wikipedia.org/wiki/Rem).
2.2.3 Karakteristik Pengereman
2.2.3.1 Material Kampas
Persyaratan bahan untuk kampas rem, baik untuk drum ataupun disk sangatlah sulit. Di samping agar dapat memberikan koefisien gesek yang tinggi, juga diharapkan tidak terpengaruh oleh temperatur, tekanan, kecepatan gesek, air, oli dan secara mekanis harus mampu di keling atau di lem pada sepatunya, tidak menimbulkan suara (noise) akibat pengereman, berharga murah dan mempunyai umur pakai yang lama (Lubi, 2001).
Bahan dasar kampas secara umum adalah asbestos dilengkapi dengan bahan inorganic seperti: logam oksida, sulphat, Mn atau Co dan silikat. Semuanya dilekatkan bersama dengan berbagai resin organik, karet dan lain-lain. kampas rem dari bahan asbestos hanya memiliki I jenis fiber yaitu asbes yang merupakan komponen yang menimbulkan karsinogenik, sehingga kampas rem ini memiliki kelemahan pada saat kondisi basah yang mengakibatkan efek licin waktu pengereman. Kampas rem yang terbuat dari asbestos hanya bisa bertahan sampai dengan suhu 2000C rem asbestos akan blong (fading) pada temperature 2000C (Waskito, 2008). Namun saat ini banyak digunakan material sintetis dimana semua bahan dicampur jadi satu termasuk asbestos fibres, kawat seng dan kuningan dengan menambahkan resin bahan pengikat. Sehingga dengan demikian lebih mudah untuk ditambahkan bahan lain guna meningkatkan kemampuan dari kampas rem, yang kemudian dikenal dengan tipe cetak (moulded type) (Lubi, 2001).
Bahan kampas rem asli adalah kampas rem yang terbuat dari bahan non asbestos biasanya terdiri dari 4 s/d 5 macam fiber diantaranya Kevlar, steel fiber, rock wool, cellulose dan carbon fiber yang memiliki serat panjang. Bilamana bahan menggunakan kampas rem non asbestos yang memiliki beberapa jenis fiber maka efek licin tersebut dapat teratasi. Kampas rem non asbestos bertahan sampai 3600C sehingga cenderung stabil (tidak blong). Bahan kampas rem non asbestos yang terbuat dari material berkualitas seperti Kevlar/aramid. Kevlar ini bahan yang digunakan untuk baju anti peluru di mana Kevlar mampu menghambat laju putaran peluru sampai berhenti, jadi pada dasarnya Kevlar itu menghentikan putaran peluru bukan memantulkan peluru seperti baja. Inilah yang kadang kadang orang berpendapat non asbestos keras padahal tidak, terbukti putaran peluru bisa dihentikan apalagi putaran rotor atau drum kendaraan bermotor (Waskito, 2008).
Berdasarkan proses pembuatannya, kampas rem tromol (brake shoes) sepeda motor bahan penguatnya (reinforced) terdiri atas partikel yang tersebar merata dalam matriks yang berfungsi sebagai pengikat, sehingga menghasilkan bentuk padatan yang baik. Melalui proses penekanan sekaligus pemanasan pada saat pencetakan (sintering) akan dihasilkan kekuatan, kekerasan serta gaya gesek yang semakin meningkat. Pemanasan dilakukan pada temperatur berkisar antara 1300C-1500C, yang menyebabkan bahan tersebut akan mengalami perubahan struktur dimana antara partikel satu dengan yang lain saling melekat serta akan diperoleh bentuk solid yang baik dan matriks pengikat yang kuat (Setiyanto, 2009).
Kemampuan bahan material kampas rem setiap kendaraan memiliki titik kritis masing-masing. Titik kritis bahan material kampas rem, ditunjukan dengan mengerasnya permukaan kampas rem dan menjadi licin. Keadaan seperti itu yang mengakibatkan kendaraan mengalami pengereman kurang maksimal
2.2.3.2 Sifat Mekanik Kampas Rem
Masing-masing tipe sepeda motor memiliki bentuk serta kualitas bahan kampas rem khusus. Secara umum bagian-bagian kampas rem terdiri dari daging kampas (bahan friksi), dudukan kampas (body brake shoe) dan 2 buah spiral. Pada aplikasi sistem pengereman otomotif yang aman dan efektif, bahan friksi harus memenuhi persyaratan minimum mengenai unjuk kerja, noise dan daya tahan. Bahan rem harus memenuhi persyaratan keamanan, ketahanan dan dapat mengerem dengan halus. Selain itu juga harus mempunyai koefisien gesek yang tinggi, keausan kecil, kuat, tidak melukai permukaan roda dan dapat menyerap getaran.
Sifat mekanik menyatakan kemampuan suatu bahan (seperti komponen yang terbuat dari bahan tersebut) untuk menerima beban/gaya/energi tanpa menimbulkan kerusakan pada bahan/komponen tersebut. Sering kali bila suatu bahan mempunyai sifat mekanik yang baik tetapi kurang baik pada sifat yang lain, maka diambil langkah untuk mengatasi kekurangan tersebut dengan berbagai cara yang diperlukan. Untuk mendapatkan standar acuan tentang spesifikasi teknik kampas rem, maka nilai kekerasan, keausan, bending dan sifat mekanik lainnya harus mendekati nilai standar keamanannya. Adapun persyaratan teknik dari kampas rem komposit yakni:
a. Untuk nilai kekerasan sesuai standar keamanan 68 – 105 (Rockwell R).
b. Ketahanan panas 360 0C, untuk pemakaian terus menerus sampai dengan
250 0C.
c. Nilai keausan kampas rem adalah (5 x 10-4 - 5 x 10-3 mm2/kg)
d. Koefisien gesek 0,14 – 0,27
e. Massa jenis kampas rem adalah 1,5 – 2,4 gr/cm3
f. Konduktivitas thermal 0,12 – 0,8 W.m.°K
g. Tekanan Spesifiknya adalah 0,17 – 0,98 joule/g.°C
h. Kekuatan geser 1300 – 3500 N/cm2
i. Kekuatan perpatahan 480 – 1500 N/cm2
2.2.4 Cara Kerja Rem
Menghentikan laju suatu kendaraan dapat dilakukan dengan beberapa cara, antara lain dengan menggunakan alat pengereman seperti rem cakram maupun rem tromol, tetapi ada cara lain yang dapat digunakan untuk menghentikan laju kendaraan yaitu dengan menggunakan bantuan engine brake. Prinsipnya dengan menurunkan gigi persneling pada gigi yang lebih rendah akan memberikan efek pengereman, meskipun tidak sekuat jika dilakukan dengan rem. Biasanya engine brake digunakan untuk membantu meringankan kerja dari rem. Alat pengereman dari suatu kendaraan dibedakan menjadi dua jenis yaitu tipe drum dan tipe piringan/cakram (Sen, 2008).
1. Rem Cakram
Rem cakram terdiri dari piringan yang dibuat dari logam, piringan logam ini akan dijepit oleh kanvas rem cakram (brake pad) yang didorong oleh sebuah torak yang ada dalam silinder roda. Untuk menjepit piringan ini diperlukan tenaga yang cukup kuat. Guna untuk memenuhi kebutuhan tenaga ini, pada rem cakram dilengkapi dengan sistem hydraulic, agar dapat menghasilkan tenaga yang cukup kuat. Sistem hydraulic terdiri dari master silinder, silinder roda, reservoir untuk tempat oli rem dan komponen penunjang lainnya. Pada kendaraan roda dua, ketika handel rem ditarik, bubungan yang terdapat pada handel rem akan menekan torak yang terdapat dalam master silinder. Torak ini kan mendorong oli rem ke arah saluran oli, yang selanjutnya masuk ke dalam ruangan silinder roda. Pada bagian torak sebelah luar dipasang kanvas atau brake pad, brake pad ini akan menjepit piringan metal dengan memanfaatkan gaya/tekanan torak ke arah luar yang diakibatkan oleh tekanan oli rem tadi (Sen, 2008).
Gambar 2.2 Rem cakram (Sen, 2008).
2. Rem Tromol
Tipe drum, rem ini terdiri dari sepasang kampas rem yang terletak pada piringan yang tetap (tidak ikut berputar bersama roda), dan drum yang berputar bersama roda. Dalam operasinya setiap kampas rem akan bergerak radial menekan drum sehingga terjadi gesekan antara drum dan kampas rem (Sen, 2008).
Gambar 2.3 Rem tromol (Zainuri, 2010)
Pada rem tromol, penghentian atau pengurangan putaran roda dilakukan dengan adanya gesekan antara kampas rem dengan tromolnya. Pada saat tuas rem tidak ditekan kampas rem dengan tromol tidak saling kontak. Tromol rem berputar bebas mengikuti putaran roda, tetapi pada saat tuas rem ditekan lengan rem memutar cam pada sepatu rem sehingga kampas rem menjadi mengembang dan bergesekan dengan tromolnya. Akibatnya putaran tromol dapat ditahan atau dihentikan.
Rem drum mempunyai kelemahan kalau terendam air, tidak dapat berfungsi dengan baik karena koefisen gesek berkurang secara nyata/banyak. Oleh karena itu mulai ditinggalkan dalam dunia otomotif dan mengantinya dengan rem cakram (Sen, 2008)
Untuk mengetahui besarnya gaya gesek yang ditimbulkan oleh kampas rem tromol dapat dihitung dengan rumus sebagai berikut :
Untuk benda yang diam menggunakan rumus :
Fg = F............................................................................................................ (2-1)
Untuk benda tepat akan bergerak ( gaya gesek mencapai maksimum )
Fs = μs . N...................................................................................................... (2-2)
Untuk benda bergerak menggunakan rumus :
Fk = μk . N...................................................................................................... (2-3)
Besarnya torsi yang diserap oleh rem adalah
T = Fout . r
Dengan : Fg = Gaya Pegas ( N )
Fs = Gaya Gesek Statis (N)
Fk = Gaya Gesek Kinetik (N)
k = Konstanta Pegas ( N/mm)
N = Gaya Normal = Fout ( N )
μs = Koefisien Gesek Statis
μk = Koefisien Gesek Kinetik
r = jarak ( mm )
T = Torsi ( Nmm)
2.2.5 Pengaruh Temperatur dan Koefisien Gesek Pada Kampas Rem
Perilaku kampas rem terhadap temperature dapat menunjukkan kemampuan dari kampas rem itu sendiri dan harga koefisien gesek (μ) yang stabil pada rentang temperatur kerjanya merupakan suatu hal yang ideal.
Penurunan yang besar dari harga koefisien gesek pada temperatur tinggi dapat mengakibatkan fade (pudar) dan ini dapat menurunkan daya pengereman. Dibawah ini dapat dilihat hubungan antara koefisien gesek dengan temperatur kampas saat pengereman yang dapat dilihat pada gambar 2.4, sedangkan hubungan antara temperature dengan laju keausan. Sebagaimana tampak pada gambar 2.5 (Lubi, 2001).
Gambar 2.4 Hubungan antara koefisien gesek dengan temperature saat pengereman (Lubi, 2001).
Gambar 2.5 Hubungan antara laju keausan dengan temperatur (Lubi, 2001).
2.2.5.1 Kenaikan Temperatur Kampas
Pengereman merupakan salah satu bentuk perubahan energi kinetik menjadi energi panas yang tercemin dari adanya kenaikan temperatur, baik pada kampas maupun pada drum. Pada proses pengereman terjadi gesekan antara kampas rem dan drum karena kedua elemen tersebut berada pada putaran yang berbeda, energi yang diserap dalam bentuk panas menyebabkan adanya kenaikan temperatur baik pada kampas atau pada drum (Lubi, 2001).
Walaupun kenaikan temperature memerlukan selang waktu tertentu, namun hal tersebut diasumsikan terjadi secara singkat. Temperatur kemudian turun jika rem dilepas kecuali diikuti kembali oleh pengereman yang berikutnya, sehingga pada pengereman yang kedua temperatur kembali mengalami kenaikan dan kembali akan menurun secara eksponensial seperti sebelumnya jika tidak dilakukan pengereman kembali (Lubi, 2001).
2.2.5.2 Efisiensi Pengereman
Untuk mengetahui karakteristik dari kemampuan pengereman pada kendaraan, seringkali digunakan perhitungan efisiensi pengereman. Efisiensi pengereman (breaking efficiency) adalah didefinisikan sebagai perbandingan dari perlambatan maksimum yang dapat dicapai dalam unit gravitasi g sebelum terjadinya lock pada ban dengan koefisien adhesi dari jalan μ, dan dirumuskan sebagai berikut (Lubi, 2001).
.......................................................................................... (2-4)
Dengan a = perlambatan maksimum (m/s2)
g = gravitasi ( m/s2)
μ = koefisien adhesi
Efisiensi pengereman mengindentifikasikan tingkat sampai sejauh mana kendaraan tersebut memanfaatkan koefisien adhesi jalan yang tersedia selama pengereman (Lubi, 2001).